MathDB
Chebyshev with Max

Source: 2016 KMO Senior #6

November 12, 2016
inequalities

Problem Statement

For a positive integer nn, there are nn positive reals a1a2a3ana_1 \ge a_2 \ge a_3 \cdots \ge a_n. For all positive reals b1,b2,bnb_1, b_2, \cdots b_n, prove the following inequality.
a1b1+a2b2++anbna1+a2+anmax{b11,b1+b22,,b1+b2++bnn}\frac{a_1b_1+a_2b_2 + \cdots +a_nb_n}{a_1+a_2+ \cdots a_n} \le \text{max}\{ \frac{b_1}{1}, \frac{b_1+b_2}{2}, \cdots, \frac{b_1+b_2+ \cdots +b_n}{n} \}