MathDB
Nice inequality with A,G,H - IMO LongList 1992

Source:

September 2, 2010
functionthree variable inequalityInequalityalgebraIMO ShortlistIMO Longlist

Problem Statement

For positive numbers a,b,ca, b, c define A=(a+b+c)3A = \frac{(a + b + c)}{3}, G=abc3G = \sqrt[3]{abc}, H=3(a1+b1+c1).H = \frac{3}{(a^{-1} + b^{-1} + c^{-1})}. Prove that (AG)314+34AH. \left( \frac AG \right)^3 \geq \frac 14 + \frac 34 \cdot \frac AH.