MathDB
Multiple root of a polynomial

Source:

October 31, 2010
algebrapolynomialalgebra unsolved

Problem Statement

Let δ\delta be a symbol such that δ0\delta \neq 0 and δ2=0\delta^2 = 0. Define R[δ]={a+bδa,bR}\mathbb R[\delta] = \{a + b \delta | a, b \in \mathbb R\}, where a+bδ=c+dδa+ b \delta = c+ d \delta if and only if a=ca = c and b=db = d, and define (a+bδ)+(c+dδ)=(a+c)+(b+d)δ,(a + b \delta) + (c + d \delta) = (a + c) + (b + d) \delta,(a+bδ)(c+dδ)=ac+(ad+bc)δ.(a + b \delta) \cdot (c + d \delta) = ac + (ad + bc) \delta. Let P(x)P(x) be a polynomial with real coefficients. Show that P(x)P(x) has a multiple real root if and only if P(x)P(x) has a non-real root in R[δ].\mathbb R[\delta].