MathDB
Trigonometry: 3 roots are given

Source: Flanders MO 2006 Q1

April 19, 2006
trigonometryalgebrapolynomialVietacomplex numbers

Problem Statement

(a) Solve for θR\theta\in\mathbb{R}: cos(4θ)=cos(3θ)\cos(4\theta) = \cos(3\theta) (b) cos(2π7)\cos\left(\frac{2\pi}{7}\right), cos(4π7)\cos\left(\frac{4\pi}{7}\right) and cos(6π7)\cos\left(\frac{6\pi}{7}\right) are the roots of an equation of the form ax3+bx2+cx+d=0ax^3+bx^2+cx+d = 0 where a,b,c,da, b, c, d are integers. Determine a,b,ca, b, c and dd.