MathDB
Romanian National Olympiad 2018 - Grade 12 - problem 3

Source: Romania NMO - 2018

April 7, 2018
functioninequalitiescalculusintegralsreal analysis

Problem Statement

Let f:[a,b]Rf:[a,b] \to \mathbb{R} be an integrable function and (an)R(a_n) \subset \mathbb{R} such that an0.a_n \to 0. <spanclass=latexbold>a)</span><span class='latex-bold'>a) </span> If A={manm,nN},A= \{m \cdot a_n \mid m,n \in \mathbb{N}^* \}, prove that every open interval of strictly positive real numbers contains elements from A.A. <spanclass=latexbold>b)</span><span class='latex-bold'>b) </span> If, for any nNn \in \mathbb{N}^* and for any x,y[a,b]x,y \in [a,b] with xy=an,|x-y|=a_n, the inequality xyf(t)dtxy\left| \int_x^yf(t)dt \right| \leq |x-y| is true, prove that xyf(t)dtxy,x,y[a,b]\left| \int_x^y f(t)dt \right| \leq |x-y|, \: \forall x,y \in [a,b]
Nicolae Bourbacut