MathDB
Bosnia and Herzegovina TST 2012 Problem 4

Source:

May 20, 2012
functioninductionalgebrapolynomialmodular arithmeticnumber theory proposednumber theory

Problem Statement

Define a function f:NNf:\mathbb{N}\rightarrow\mathbb{N}, f(1)=p+1,f(1)=p+1, f(n+1)=f(1)f(2)f(n)+p,f(n+1)=f(1)\cdot f(2)\cdots f(n)+p, where pp is a prime number. Find all pp such that there exists a natural number kk such that f(k)f(k) is a perfect square.