MathDB
cosA+cosB+cosC<=\sqrt5 All-Russian MO 1995 Regional (R4) 11.5

Source:

August 26, 2024
algebrainequalitiestrigonometry

Problem Statement

Angles α,β,γ\alpha, \beta, \gamma satisfy the inequality sinα+sinβ+sinγ2\sin \alpha +\sin \beta +\sin \gamma \ge 2. Prove that cosα+cosβ+cosγ5.\cos \alpha + \cos \beta +\cos \gamma \le \sqrt5.