MathDB
1997 MMO Grade 10 #4

Source:

October 3, 2016
Grade 101997

Problem Statement

Given real numbers a1a2a3a_1\leq{a_2}\leq{a_3} and b1b2b3b_1\leq{b_2}\leq{b_3} such that a1+a2+a3=b1+b2+b3,a_1+a_2+a_3=b_1+b_2+b_3, a1a2+a2a3+a1a3=b1b2+b2b3+b1b3.a_1a_2+a_2a_3+a_1a_3=b_1b_2+b_2b_3+b_1b_3. Prove that if a1b1,a_1\leq{b_1}, then a3b3a_3\leq{b_3}