MathDB
Problems
Contests
National and Regional Contests
Bulgaria Contests
Bulgaria Team Selection Test
2005 Bulgaria Team Selection Test
4
Maximum Possible Number of Positive Numbers
Maximum Possible Number of Positive Numbers
Source: Bulgarian IMO TST 2005, Day 2, Problem 1
July 7, 2013
inequalities
function
quadratics
inequalities proposed
Problem Statement
Let
a
i
a_{i}
a
i
and
b
i
b_{i}
b
i
, where
i
∈
{
1
,
2
,
…
,
2005
}
i \in \{1,2, \dots, 2005 \}
i
∈
{
1
,
2
,
…
,
2005
}
, be real numbers such that the inequality
(
a
i
x
−
b
i
)
2
≥
∑
j
=
1
,
j
≠
i
2005
(
a
j
x
−
b
j
)
(a_{i}x-b_{i})^{2} \ge \sum_{j=1, j \not= i}^{2005} (a_{j}x-b_{j})
(
a
i
x
−
b
i
)
2
≥
∑
j
=
1
,
j
=
i
2005
(
a
j
x
−
b
j
)
holds for all
x
∈
R
x \in \mathbb{R}
x
∈
R
and all
i
∈
{
1
,
2
,
…
,
2005
}
i \in \{1,2, \dots, 2005 \}
i
∈
{
1
,
2
,
…
,
2005
}
. Find the maximum possible number of positive numbers amongst
a
i
a_{i}
a
i
and
b
i
b_{i}
b
i
,
i
∈
{
1
,
2
,
…
,
2005
}
i \in \{1,2, \dots, 2005 \}
i
∈
{
1
,
2
,
…
,
2005
}
.
Back to Problems
View on AoPS