MathDB
Maximum Possible Number of Positive Numbers

Source: Bulgarian IMO TST 2005, Day 2, Problem 1

July 7, 2013
inequalitiesfunctionquadraticsinequalities proposed

Problem Statement

Let aia_{i} and bib_{i}, where i{1,2,,2005}i \in \{1,2, \dots, 2005 \}, be real numbers such that the inequality (aixbi)2j=1,ji2005(ajxbj)(a_{i}x-b_{i})^{2} \ge \sum_{j=1, j \not= i}^{2005} (a_{j}x-b_{j}) holds for all xRx \in \mathbb{R} and all i{1,2,,2005}i \in \{1,2, \dots, 2005 \}. Find the maximum possible number of positive numbers amongst aia_{i} and bib_{i}, i{1,2,,2005}i \in \{1,2, \dots, 2005 \}.