China South East Mathematical Olympiad 2020 Grade11 Q4
Source: China Zhuji
August 5, 2020
inequalitiesChinaalgebran-variable inequality
Problem Statement
Let 0≤a1≤a2≤⋯≤an−1≤an and a1+a2+⋯+an=1. Prove that: For any non-negative numbers x1,x2,⋯,xn;y1,y2,⋯,yn , have
(i=1∑naixi−i=1∏nxiai)(i=1∑naiyi−i=1∏nyiai)≤an2(ni=1∑nxii=1∑nyi−i=1∑nxii=1∑nyi)2.