MathDB
China South East Mathematical Olympiad 2020 Grade11 Q4

Source: China Zhuji

August 5, 2020
inequalitiesChinaalgebran-variable inequality

Problem Statement

Let 0a1a2an1an0\leq a_1\leq a_2\leq \cdots\leq a_{n-1}\leq a_n and a1+a2++an=1.a_1+a_2+\cdots+a_n=1. Prove that: For any non-negative numbers x1,x2,,xn;y1,y2,,ynx_1,x_2,\cdots,x_n ; y_1, y_2,\cdots, y_n , have (i=1naixii=1nxiai)(i=1naiyii=1nyiai)an2(ni=1nxii=1nyii=1nxii=1nyi)2.\left(\sum_{i=1}^n a_ix_i - \prod_{i=1}^n x_i^{a_i}\right) \left(\sum_{i=1}^n a_iy_i - \prod_{i=1}^n y_i^{a_i}\right) \leq a_n^2\left(n\sqrt{\sum_{i=1}^n x_i\sum_{i=1}^n y_i} - \sum_{i=1}^n\sqrt{x_i} \sum_{i=1}^n\sqrt{y_i}\right)^2.