MathDB
Miklós Schweitzer 2002, Problem 4

Source: Miklós Schweitzer 2002

July 30, 2016
college contestsMiklos Schweitzeralgebra

Problem Statement

For a given natural number nn, consider those sets AZnA\subseteq \mathbb{Z}_n for which the equation xy=uvxy=uv has no other solution in the residual classes x,y,u,vAx,y,u,v\in A than the trivial solutions x=ux=u, y=vy=v and x=vx=v, y=uy=u. Let g(n)g(n) be the maximum of the size of such sets AA. Prove that lim supng(n)n=1\limsup_{n\to\infty}\frac{g(n)}{\sqrt{n}}=1