MathDB
Equivalence with arctan

Source: RMO District Round, Bucharest 2008, Grade 10, Problem 2

January 27, 2008
functionalgebradomainalgebra proposed

Problem Statement

Consider the positive reals x x, y y and z z. Prove that: a) \arctan(x) \plus{} \arctan(y) < \frac {\pi}{2} iff xy<1 xy < 1. b) \arctan(x) \plus{} \arctan(y) \plus{} \arctan(z) < \pi iff xyz < x \plus{} y \plus{} z.