MathDB
hard question 3

Source: iran tst 2014 third exam

May 22, 2014
algebrapolynomialfunctionalgebra unsolved

Problem Statement

let m,nNm,n\in \mathbb{N} and p(x),q(x),h(x)p(x),q(x),h(x) are polynomials with real Coefficients such that p(x)p(x) is Descending. and for all xRx\in \mathbb{R} p(q(nx+m)+h(x))=n(q(p(x))+h(x))+mp(q(nx+m)+h(x))=n(q(p(x))+h(x))+m . prove that dont exist function f:RRf:\mathbb{R}\rightarrow \mathbb{R} such that for all xRx\in \mathbb{R} f(q(p(x))+h(x))=f(x)2+1f(q(p(x))+h(x))=f(x)^{2}+1