MathDB
Problems
Contests
National and Regional Contests
Moldova Contests
Moldova Team Selection Test
2007 Moldova Team Selection Test
1
it's quite hard for me to characterize this..
it's quite hard for me to characterize this..
Source: Moldova 2007 IMO-BMO TST III problem 1
March 24, 2007
inequalities
inequalities proposed
Problem Statement
Let
a
1
,
a
2
,
…
,
a
n
∈
[
0
;
1
]
a_{1}, a_{2}, \ldots, a_{n}\in [0;1]
a
1
,
a
2
,
…
,
a
n
∈
[
0
;
1
]
. If
S
=
a
1
3
+
a
2
3
+
…
+
a
n
3
S=a_{1}^{3}+a_{2}^{3}+\ldots+a_{n}^{3}
S
=
a
1
3
+
a
2
3
+
…
+
a
n
3
then prove that
a
1
2
n
+
1
+
S
−
a
1
3
+
a
2
2
n
+
1
+
S
−
a
2
3
+
…
+
a
n
2
n
+
1
+
S
−
a
n
3
≤
1
3
\frac{a_{1}}{2n+1+S-a_{1}^{3}}+\frac{a_{2}}{2n+1+S-a_{2}^{3}}+\ldots+\frac{a_{n}}{2n+1+S-a_{n}^{3}}\leq \frac{1}{3}
2
n
+
1
+
S
−
a
1
3
a
1
+
2
n
+
1
+
S
−
a
2
3
a
2
+
…
+
2
n
+
1
+
S
−
a
n
3
a
n
≤
3
1
Back to Problems
View on AoPS