MathDB
Prove that the points are collinear [Iran Second Round 1994]

Source:

November 26, 2010
geometryincentercircumcircleinradiusgeometry proposed

Problem Statement

The incircle of triangle ABCABC meet the sides AB,ACAB, AC and BCBC in M,NM,N and PP, respectively. Prove that the orthocenter of triangle MNP,MNP, the incenter and the circumcenter of triangle ABCABC are collinear.
[asy] import graph; size(300); real lsf = 0.5; pen dp = linewidth(0.7) + fontsize(10); defaultpen(dp); pen ds = black; pen ttttff = rgb(0.2,0.2,1); pen ffwwww = rgb(1,0.4,0.4); pen xdxdff = rgb(0.49,0.49,1); draw((8,17.58)--(2.84,9.26)--(20.44,9.21)--cycle); draw((8,17.58)--(2.84,9.26),ttttff+linewidth(2pt)); draw((2.84,9.26)--(20.44,9.21),ttttff+linewidth(2pt)); draw((20.44,9.21)--(8,17.58),ttttff+linewidth(2pt)); draw(circle((9.04,12.66),3.43),blue+linewidth(1.2pt)+linetype("8pt 8pt")); draw((6.04,14.42)--(8.94,9.24),ffwwww+linewidth(1.2pt)); draw((8.94,9.24)--(11.12,15.48),ffwwww+linewidth(1.2pt)); draw((11.12,15.48)--(6.04,14.42),ffwwww+linewidth(1.2pt)); draw((8.94,9.24)--(7.81,14.79)); draw((11.12,15.48)--(6.95,12.79)); draw((6.04,14.42)--(10.12,12.6)); dot((8,17.58),ds); label("AA", (8.11,18.05),NE*lsf); dot((2.84,9.26),ds); label("BB", (2.11,8.85), NE*lsf); dot((20.44,9.21),ds); label("CC", (20.56,8.52), NE*lsf); dot((9.04,12.66),ds); label("OO", (8.94,12.13), NE*lsf); dot((6.04,14.42),ds); label("MM", (5.32,14.52), NE*lsf); dot((11.12,15.48),ds); label("NN", (11.4,15.9), NE*lsf); dot((8.94,9.24),ds); label("PP", (8.91,8.58), NE*lsf); dot((7.81,14.79),ds); label("DD", (7.81,15.14),NE*lsf); dot((6.95,12.79),ds); label("FF", (6.64,12.07),NE*lsf); dot((10.12,12.6),ds); label("GG", (10.41,12.35),NE*lsf); dot((8.07,13.52),ds); label("HH", (8.11,13.88),NE*lsf); clip((-0.68,-0.96)--(-0.68,25.47)--(30.71,25.47)--(30.71,-0.96)--cycle); [/asy]