MathDB
Hardcore algebra sequence

Source: Bulgaria EGMO TST 2019 Problem 2

December 8, 2022
algebraSequenceSums and Productsseries

Problem Statement

The sequence of real numbers (an)n0(a_n)_{n\geq 0} is such that a0=1a_0 = 1, a1=a>2a_1 = a > 2 and an+1=((anan1)22)an\displaystyle a_{n+1} = \left(\left(\frac{a_n}{a_{n-1}}\right)^2 -2\right)a_n for every positive integer nn. Prove that i=0k1ai<2+aa242\displaystyle \sum_{i=0}^k \frac{1}{a_i} < \frac{2+a-\sqrt{a^2-4}}{2} for every positive integer kk.