MathDB
Problems
Contests
National and Regional Contests
China Contests
China Northern MO
2012 China Northern MO
3
x=a^2+ab+b^2 with a,b \in Z
x=a^2+ab+b^2 with a,b \in Z
Source: China Northern MO 2012 p3 CNMO
May 4, 2024
number theory
divides
Problem Statement
Suppose
S
=
{
x
∣
x
=
a
2
+
a
b
+
b
2
,
a
,
b
∈
Z
}
S= \{x|x=a^2+ab+b^2,a,b \in Z\}
S
=
{
x
∣
x
=
a
2
+
ab
+
b
2
,
a
,
b
∈
Z
}
. Prove that:(1) If
m
∈
S
m \in S
m
∈
S
,
3
∣
m
3|m
3∣
m
, then
m
3
∈
S
\frac{m}{3} \in S
3
m
∈
S
(2) If
m
,
n
∈
S
m,n \in S
m
,
n
∈
S
, then
m
n
∈
S
mn\in S
mn
∈
S
.
Back to Problems
View on AoPS