MathDB
max of \frac{n!}{n_1!n_2!n_3!n_4!}2^{ {n_1 \choose 2}+...}

Source: Romania IMO TST 1993 2.4

February 17, 2020
combinatoricsCombinationsBinomialmaxinequalities

Problem Statement

For each integer n>3n > 3 find all quadruples (n1,n2,n3,n4)(n_1,n_2,n_3,n_4) of positive integers with n1+n2+n3+n4=nn_1 +n_2 +n_3 +n_4 = n which maximize the expression n!n1!n2!n3!n4!2(n12)+(n22)+(n32)+(n42)+n1n2+n2n3+n3n4\frac{n!}{n_1!n_2!n_3!n_4!}2^{ {n_1 \choose 2}+{n_2 \choose 2}+{n_3 \choose 2}+{n_4 \choose 2}+n_1n_2+n_2n_3+n_3n_4}