MathDB
kl positive integers

Source: 11-th Hungary-Israel Binational Mathematical Competition 2000

April 22, 2007
inequalitiesinductioninequalities unsolved

Problem Statement

Let kk and ll be two given positive integers and aij(1ik,1jl)a_{ij}(1 \leq i \leq k, 1 \leq j \leq l) be klkl positive integers. Show that if qp>0q \geq p > 0, then (j=1l(i=1kaijp)q/p)1/q(i=1k(j=1laijq)p/q)1/p.(\sum_{j=1}^{l}(\sum_{i=1}^{k}a_{ij}^{p})^{q/p})^{1/q}\leq (\sum_{i=1}^{k}(\sum_{j=1}^{l}a_{ij}^{q})^{p/q})^{1/p}.