MathDB
Logarithm Simplification

Source:

June 7, 2009
logarithms

Problem Statement

Through the use of theorems on logarithms \log{\frac{a}{b}} \plus{} \log{\frac{b}{c}} \plus{} \log{\frac{c}{d}} \minus{} \log{\frac{ay}{dx}} can be reduced to: <spanclass=latexbold>(A)</span> logyx<spanclass=latexbold>(B)</span> logxy<spanclass=latexbold>(C)</span> 1<spanclass=latexbold>(D)</span> 0<spanclass=latexbold>(E)</span> loga2yd2x <span class='latex-bold'>(A)</span>\ \log{\frac{y}{x}}\qquad <span class='latex-bold'>(B)</span>\ \log{\frac{x}{y}}\qquad <span class='latex-bold'>(C)</span>\ 1\qquad <span class='latex-bold'>(D)</span>\ 0\qquad <span class='latex-bold'>(E)</span>\ \log{\frac{a^2y}{d^2x}}