Through the use of theorems on logarithms
\log{\frac{a}{b}} \plus{} \log{\frac{b}{c}} \plus{} \log{\frac{c}{d}} \minus{} \log{\frac{ay}{dx}}
can be reduced to:
<spanclass=′latex−bold′>(A)</span>logxy<spanclass=′latex−bold′>(B)</span>logyx<spanclass=′latex−bold′>(C)</span>1<spanclass=′latex−bold′>(D)</span>0<spanclass=′latex−bold′>(E)</span>logd2xa2y