Find smallest natural number k such that f^k(0) = 0
Source: IMO ShortList 1990, Problem 18 (NOR 1)
August 15, 2008
functionalgebrarecurrence relationrecursionIMO Shortlist
Problem Statement
Let with and M \equal{} \left[\frac {a \plus{} b}{2} \right]. Define a function by
f(n) \equal{} \begin{cases} n \plus{} a, & \text{if } n \leq M, \\
n \minus{} b, & \text{if } n >M. \end{cases}
Let f^1(n) \equal{} f(n), f_{i \plus{} 1}(n) \equal{} f(f^i(n)), i \equal{} 1, 2, \ldots Find the smallest natural number such that f^k(0) \equal{} 0.