MathDB
Miklos Schweitzer 1975_8

Source: Sequences and Series

December 30, 2008
real analysisreal analysis unsolved

Problem Statement

Prove that if n=1manNam  (m=1,2,...) \sum_{n=1}^m a_n \leq Na_m \;(m=1,2,...) holds for a sequence {an} \{a_n \} of nonnegative real numbers with some positive integer N N, then αi+ppαi \alpha_{i+p} \geq p \alpha_i for i,p=1,2,..., i,p=1,2,..., where αi=n=(i1)N+1iNan  (i=1,2,...) . \alpha_i= \sum_{n=(i-1)N+1}^{iN} a_n \;(i=1,2,...)\ . L. Leindler