MathDB
The sum of terms is less than 1 - [Iran Second Round 1988]

Source:

December 7, 2010
number theory proposednumber theory

Problem Statement

Let {an}n=1\{a_n \}_{n=1}^{\infty} be a sequence such that a1=12a_1=\frac 12 and an=(2n32n)an1n2.a_n=\biggl( \frac{2n-3}{2n} \biggr) a_{n-1} \qquad \forall n \geq 2. Prove that for every positive integer n,n, we have k=1nak<1.\sum_{k=1}^n a_k <1.