MathDB
a^2.AM.AN=b^2.BN.CM

Source:

August 18, 2010
geometrytrapezoidtrigonometryincentermodular arithmeticratioparallelogram

Problem Statement

We are given an isosceles triangle ABCABC such that BC=aBC=a and AB=BC=bAB=BC=b. The variable points M(AC)M\in (AC) and N(AB)N\in (AB) satisfy a2AMAN=b2BNCMa^2\cdot AM \cdot AN = b^2 \cdot BN \cdot CM. The straight lines BMBM and CNCN intersect in PP. Find the locus of the variable point PP.
Dan Branzei