MathDB
Inequality with sequence of non negative real numbers

Source:

December 31, 2011
inequalitieslogarithmsinequalities unsolved

Problem Statement

Let <an><a_n> be a sequence of non-negative real numbers such that am+nam+ana_{m+n} \le a_m +a_n for all m,nNm,n \in \mathbb{N}. Prove that k=1Nakk2aN4NlnN\sum_{k=1}^{N} \frac{a_k}{k^2}\ge \frac{a_N}{4N}\ln N for any NNN \in \mathbb{N}, where ln\ln denotes the natural logarithm.