MathDB
Putnam 1995 B6

Source: Putnam

January 10, 2007
Putnamfloor functionceiling functionlimitcollege contests

Problem Statement

For any a>0a>0,set S(a)={nanN}\mathcal{S}(a)=\{\lfloor{na}\rfloor|n\in \mathbb{N}\}. Show that there are no three positive reals a,b,ca,b,c such that S(a)S(b)=S(b)S(c)=S(c)S(a)= \mathcal{S}(a)\cap \mathcal{S}(b)=\mathcal{S}(b)\cap \mathcal{S}(c)=\mathcal{S}(c)\cap \mathcal{S}(a)=\emptyset S(a)S(b)S(c)=N \mathcal{S}(a)\cup \mathcal{S}(b)\cup \mathcal{S}(c)=\mathbb{N}