MathDB
product a_i >= 99^{100} - VI Soros Olympiad 1999-00 Round 1 10.8

Source:

May 21, 2024
inequalitiesalgebra

Problem Statement

There are 100100 positive numbers a1a_1, a2a_2, ......, a100a_{100} such that 1a1+1+1a2+1+...+1a100+11.\frac{1}{a_1+1}+\frac{1}{a_2+1}+...+\frac{1}{a_{100}+1} \le 1. Prove that a1a2...a10099100.a_1 \cdot a_2\cdot ... \cdot a_{100} \ge 99^{100}.