MathDB
2020 PUMaC Algebra A4 / B6

Source:

January 1, 2022
algebra

Problem Statement

Let PP be a 1010-degree monic polynomial with roots r1,r2,...,r10r_1, r_2, . . . , r_{10} \ne and let QQ be a 4545-degree monic polynomial with roots 1ri+1rj1rirj\frac{1}{r_i}+\frac{1}{r_j}-\frac{1}{r_ir_j} where i<ji < j and i,j{1,...,10}i, j \in \{1, ... , 10\}. If P(0)=Q(1)=2P(0) = Q(1) = 2, then log2(P(1))\log_2 (|P(1)|) can be written as a/ba/b for relatively prime integers a,ba, b. Find a+ba + b.