MathDB
Putnam 1963 A2

Source: Putnam 1963

May 1, 2022
Putnamfunctionnumber theoryrelatively primefunctional equation

Problem Statement

Let f:N→Nf:\mathbb{N}\rightarrow \mathbb{N} be a strictly increasing function such that f(2)=2f(2)=2 and f(mn)=f(m)f(n)f(mn)=f(m)f(n) for every pair of relatively prime positive integers mm and nn. Prove that f(n)=nf(n)=n for every positive integer nn.