MathDB
Romanian TST 1992

Source: Romanian TST 1992 - Day 2 - Problem 2

April 9, 2012
inequalitiesinequalities proposed

Problem Statement

Let a1,a2,...,ak a_1, a_2, ..., a_k be distinct positive integers such that the 2k2^k sums i=1kϵiai\displaystyle\sum\limits_{i=1}^{k}{\epsilon_i a_i}, ϵi{0,1}\epsilon_i\in\left\{0,1\right\} are distinct. a) Show that 1a1+1a2+...+1ak2(12k) \dfrac{1}{a_1}+\dfrac{1}{a_2}+...+\dfrac{1}{a_k}\le2(1-2^{-k}) ; b) Find the sequences (a1,a2,...,ak)(a_1,a_2,...,a_k) for which the equality holds.
Șerban Buzețeanu