MathDB
JBMO TST Moldova Problem 5

Source:

October 14, 2020
number theory

Problem Statement

Let there be A=1a12a2100a100A=1^{a_1}2^{a_2}\dots100^{a_100} and B=1b12b2100b100B=1^{b_1}2^{b_2}\dots100^{b_100} , where ai,biNa_i , b_i \in N , ai+bi=101ia_i + b_i = 101 - i , (i=1,2,,100i= 1,2,\dots,100). Find the last 1124 digits of P=ABP = A * B.