MathDB
Orthocenter

Source: 0

April 23, 2009
geometry

Problem Statement

Let H H be the intersection of altitudes in triangle ABC ABC. If \angle B\equal{}\angle C\equal{}\alpha and O O is the center of circle passing through A A, H H and C C, then find HOC \angle HOC in terms of α \alpha.
(A)\ 90{}^\circ \minus{}\alpha \qquad(B)\ 90{}^\circ \plus{}\frac{\alpha }{2} \qquad(C)\ 180{}^\circ \minus{}\alpha \\ \qquad(D)\ 180{}^\circ \minus{}\frac{\alpha }{2} \qquad(E)\ 180{}^\circ \minus{}2\alpha