Orthocenter
Source: 0
April 23, 2009
geometry
Problem Statement
Let be the intersection of altitudes in triangle . If \angle B\equal{}\angle C\equal{}\alpha and is the center of circle passing through , and , then find in terms of .(A)\ 90{}^\circ \minus{}\alpha \qquad(B)\ 90{}^\circ \plus{}\frac{\alpha }{2} \qquad(C)\ 180{}^\circ \minus{}\alpha \\ \qquad(D)\ 180{}^\circ \minus{}\frac{\alpha }{2} \qquad(E)\ 180{}^\circ \minus{}2\alpha