MathDB
Problems
Contests
National and Regional Contests
Serbia Contests
Serbia National Math Olympiad
2017 Serbia National Math Olympiad
1
Specific divisors implying perfect square
Specific divisors implying perfect square
Source: Serbian MO 2017 4
April 2, 2017
modular arithmetic
Problem Statement
Let
a
a
a
be a positive integer.Suppose that
∀
n
\forall n
∀
n
,
∃
d
\exists d
∃
d
,
d
≠
1
d\not =1
d
=
1
,
d
≡
1
(
m
o
d
n
)
d\equiv 1\pmod n
d
≡
1
(
mod
n
)
,
d
∣
n
2
a
−
1
d\mid n^2a-1
d
∣
n
2
a
−
1
.Prove that
a
a
a
is a perfect square.
Back to Problems
View on AoPS