MathDB
(a^2b^2)/(a+b)+(b^2c^2)/(b+c)+(c^2a^2)/(c+a) <=(a^3+b^3+c^3)/2

Source: Greece JBMO TST 2008 p2

April 29, 2019
algebrainequalitiesthree variable inequality

Problem Statement

If a,b,ca,b,c are positive real numbers, prove that a2b2a+b+b2c2b+c+c2a2c+aa3+b3+c32\frac{a^2b^2}{a+b}+\frac{b^2c^2}{b+c}+\frac{c^2a^2}{c+a}\le \frac{a^3+b^3+c^3}{2}