MathDB
0363 inequalities 3rd edition Round 6 p3

Source:

May 9, 2021
inequalities3rd edition

Problem Statement

Let n3n \ge 3 be an integer. Find the minimal value of the real number knk_n such that for all positive numbers x1,x2,...,xnx_1, x_2, ..., x_n with product 11, we have 11+knx1+11+knx2+...+11+knxnn1.\frac{1}{\sqrt{1 + k_nx_1}}+\frac{1}{\sqrt{1 + k_nx_2}}+ ... + \frac{1}{\sqrt{1 + k_nx_n}} \le n - 1.