MathDB
Your sins are forgiven

Source: 12B #13

November 17, 2021
AMCAMC 12AMC 12 B

Problem Statement

Let c=2π11.c = \frac{2\pi}{11}. What is the value of
sin3csin6csin9csin12csin15csincsin2csin3csin4csin5c?\frac{\sin 3c \cdot \sin 6c \cdot \sin 9c \cdot \sin 12c \cdot \sin 15c}{\sin c \cdot \sin 2c \cdot \sin 3c \cdot \sin 4c \cdot \sin 5c}?
<spanclass=latexbold>(A)</span> 1<spanclass=latexbold>(B)</span> 115<spanclass=latexbold>(C)</span> 115<spanclass=latexbold>(D)</span> 1011<spanclass=latexbold>(E)</span> 1<span class='latex-bold'>(A)</span>\ -1 \qquad<span class='latex-bold'>(B)</span>\ \frac{\sqrt{-11}}{5} \qquad<span class='latex-bold'>(C)</span>\ \frac{\sqrt{11}}{5} \qquad<span class='latex-bold'>(D)</span>\ \frac{10}{11} \qquad<span class='latex-bold'>(E)</span>\ 1