MathDB
2018 Individual #23

Source:

January 13, 2023
2018 Individual

Problem Statement

Diagonal ACAC is drawn in rectangle ABCDABCD. Points EE and FF are placed on BCBC such that CE:EF:FB=2:1:1CE:EF:FB=2:1:1. Let GG be the intersection of DFDF with ACAC and HH the intersection of DEDE with ACAC. Given that AD=4AD=4 and AB=8AB=8, find the length of GHGH. Express your answer as a common fraction in simplest radical form.
https://cdn.artofproblemsolving.com/attachments/4/c/b69d79cd47bcb945e7a489533eb9761ccc7ccd.png
<spanclass=latexbold>(A)</span>4521<spanclass=latexbold>(B)</span>8521<spanclass=latexbold>(C)</span>10521<spanclass=latexbold>(D)</span>455<spanclass=latexbold>(E)</span>5<span class='latex-bold'>(A) </span> \dfrac{4\sqrt5}{21}\qquad<span class='latex-bold'>(B) </span> \dfrac{8\sqrt5}{21}\qquad<span class='latex-bold'>(C) </span> \dfrac{10\sqrt5}{21}\qquad<span class='latex-bold'>(D) </span> \dfrac{4\sqrt5}{5}\qquad<span class='latex-bold'>(E) </span> \sqrt5