I got the horses in the BAC
Source: 2021 AIME II #14
March 19, 2021
AIMEAIME II
Problem Statement
Let be an acute triangle with circumcenter and centroid . Let be the intersection of the line tangent to the circumcircle of at and the line perpendicular to at . Let be the intersection of lines and . Given that the measures of and are in the ratio the degree measure of can be written as where and are relatively prime positive integers. Find .
[asy]
unitsize(5mm);
pair A,B,C,X,G,O,Y;
A = (2,8);
B = (0,0);
C = (15,0);
dot(A,5+black); dot(B,5+black); dot(C,5+black);
draw(A--B--C--A,linewidth(1.3));
draw(circumcircle(A,B,C));
O = circumcenter(A,B,C);
G = (A+B+C)/3;
dot(O,5+black); dot(G,5+black);
pair D = bisectorpoint(O,2*A-O);
pair E = bisectorpoint(O,2*G-O);
draw(A+(A-D)*6--intersectionpoint(G--G+(E-G)*15,A+(A-D)--A+(D-A)*10));
draw(intersectionpoint(G--G+(G-E)*10,B--C)--intersectionpoint(G--G+(E-G)*15,A+(A-D)--A+(D-A)*10));
X = intersectionpoint(G--G+(E-G)*15,A+(A-D)--A+(D-A)*10);
Y = intersectionpoint(G--G+(G-E)*10,B--C);
dot(Y,5+black);
dot(X,5+black);
label("",A,NW);
label("",B,SW);
label("",C,SE);
label("",O,ESE);
label("",G,W);
label("",X,dir(0));
label("",Y,NW);
draw(O--G--O--X--O--Y);
markscalefactor = 0.07;
draw(rightanglemark(X,G,O));
[/asy]