Useful characterization that compares powers of the id. func with positive func.
Source: Romanian National Olympiad 2016, grade xi, p. 3
August 25, 2019
real analysis
Problem Statement
Let be a real number and a function Show that the following relations are equivalent. \text{(i)} \varepsilon\in\mathbb{R}_{>0 } \implies\left( \lim_{x\to\infty } \frac{f(x)}{x^{a+\varepsilon }} =0\wedge \lim_{x\to\infty } \frac{f(x)}{x^{a-\varepsilon }} =\infty \right)
\text{(ii)} \lim_{x\to\infty } \frac{\ln f(x)}{\ln x } =a