MathDB
4k+2 real numbers

Source:

September 2, 2010
algebrarecurrence relationInequalitySequenceIMO ShortlistIMO Longlist

Problem Statement

Given real numbers xi (i=1,2,,4k+2)x_i \ (i = 1, 2, \cdots, 4k + 2) such that i=14k+2(1)i+1xixi+1=4m( x1=x4k+3 )\sum_{i=1}^{4k +2} (-1)^{i+1} x_ix_{i+1} = 4m \qquad ( \ x_1=x_{4k+3} \ ) prove that it is possible to choose numbers xk1,,xk6x_{k_{1}}, \cdots, x_{k_{6}} such that i=16(1)ikiki+1>m( xk1=xk7 )\sum_{i=1}^{6} (-1)^{i} k_i k_{i+1} > m \qquad ( \ x_{k_{1}} = x_{k_{7}} \ )