MathDB
Prove that the sequence is convergent and find its limit

Source: 2019 Jozsef Wildt International Math Competition

May 20, 2020
Sequenceslimitintegrationcalculus

Problem Statement

Let be x1=1n!n+1x_1=\frac{1}{\sqrt[n+1]{n!}} and x2=1(n1)!n+1x_2=\frac{1}{\sqrt[n+1]{(n-1)!}} for all nNn\in \mathbb{N}^* and f:(1(n+1)!n+1,1]Rf:\left(\left .\frac{1}{\sqrt[n+1]{(n+1)!}},1\right.\right] \to \mathbb{R} where f(x)=n+1xln(n+1)!+(n+1)ln(xx)f(x)=\frac{n+1}{x\ln (n+1)!+(n+1)\ln \left(x^x\right)}Prove that the sequence (an)n1(a_n)_{n\geq1} when an=x1x2f(x)dxa_n=\int \limits_{x_1}^{x_2}f(x)dx is convergent and compute limnan\lim \limits_{n \to \infty}a_n