MathDB
Another sequence defined by a primitive recursion

Source:

December 13, 2019
functionreal analysisprimitives

Problem Statement

Let F:RR F:\mathbb{R}\longrightarrow\mathbb{R} be a primitive with F(0)=0 F(0)=0 of the function f:RR f:\mathbb{R}\longrightarrow\mathbb{R} defined as f(x)=sin(x2), f(x)=\sin (x^2) , and let be a sequence (an)n0 \left( a_n \right)_{n\ge 0} with a0(0,1) a_0\in (0,1) and defined as an=an1F(an1). a_{n}=a_{n-1}-F\left( a_{n-1} \right) .
Calculate limnann. \lim_{n\to\infty } a_n\sqrt{n} .
Florian Dumitrel