MathDB
Romania National Olympiad 2011 - Grade XI - problem 3

Source:

April 19, 2011
functionreal analysisreal analysis unsolved

Problem Statement

Let g:RRg:\mathbb{R}\to\mathbb{R} be a continuous and strictly decreasing function with g(R)=(,0)g(\mathbb{R})=(-\infty,0) . Prove that there are no continuous functions f:RRf:\mathbb{R}\to\mathbb{R} with the property that there exists a natural number k2k\ge 2 so that : fffk times=g\underbrace{f\circ f\circ\ldots\circ f}_{k\text{ times}}=g .