MathDB
a - b and 2a + 2b + 1 are squares of integers if 2a^2 + a = 3b^2 + b

Source: Polish MO Finals 1965 p4

August 30, 2024
number theoryPerfect Square

Problem Statement

Prove that if the integers a a and b b satisfy the equation 2a2+a=3b2+b, 2a^2 + a = 3b^2 + b, then the numbers aāˆ’b a - b and 2a+2b+1 2a + 2b + 1 are squares of integers.