MathDB
Classical inequality

Source: Latvian TST for Baltic Way 2022 P2

October 25, 2022
inequalities

Problem Statement

Prove that for positive real numbers a,b,ca,b,c satisfying abc=1abc=1 the following inequality holds: ab+bc+caa2+12a+b2+12b+c2+12c. \frac{a}{b}+\frac{b}{c}+\frac{c}{a} \ge \frac{a^2+1}{2a}+\frac{b^2+1}{2b}+\frac{c^2+1}{2c}.