Romanian District Olympiad 2019 - Grade 9 - Problem 1
Source: Romanian District Olympiad 2019 - Grade 9 - Problem 1
March 18, 2019
InequalityidentityCauchy Inequalityalgebra
Problem Statement
Let n∈N,n≥2 and the positive real numbers a1,a2,…,an and b1,b2,…,bn such that a1+a2+…+an=b1+b2+…+bn=S.<spanclass=′latex−bold′>a)</span> Prove that k=1∑nak+bkak2≥2S.<spanclass=′latex−bold′>b)</span> Prove that k=1∑nak+bkak2=k=1∑nak+bkbk2.