MathDB
Romanian District Olympiad 2019 - Grade 9 - Problem 1

Source: Romanian District Olympiad 2019 - Grade 9 - Problem 1

March 18, 2019
InequalityidentityCauchy Inequalityalgebra

Problem Statement

Let nN,n2n \in \mathbb{N}, n \ge 2 and the positive real numbers a1,a2,,ana_1,a_2,…,a_n and b1,b2,,bnb_1,b_2,…,b_n such that a1+a2++an=b1+b2++bn=S.a_1+a_2+…+a_n=b_1+b_2+…+b_n=S. <spanclass=latexbold>a)</span><span class='latex-bold'>a)</span> Prove that k=1nak2ak+bkS2.\sum\limits_{k=1}^n \frac{a_k^2}{a_k+b_k} \ge \frac{S}{2}. <spanclass=latexbold>b)</span><span class='latex-bold'>b)</span> Prove that k=1nak2ak+bk=k=1nbk2ak+bk.\sum\limits_{k=1}^n \frac{a_k^2}{a_k+b_k}= \sum\limits_{k=1}^n \frac{b_k^2}{a_k+b_k}.