MathDB
Today's calculation of Integral 696

Source:

May 28, 2011
calculusintegrationalgebrapolynomialinequalitiesfunctionlinear algebra

Problem Statement

Let P(x), Q(x)P(x),\ Q(x) be polynomials such that : 02{P(x)}2dx=14, 02P(x)dx=4, 02{Q(x)}2dx=26, 02Q(x)dx=2.\int_0^2 \{P(x)\}^2dx=14,\ \int_0^2 P(x)dx=4,\ \int_0^2 \{Q(x)\}^2dx=26,\ \int_0^2 Q(x)dx=2. Find the maximum and the minimum value of 02P(x)Q(x)dx\int_0^2 P(x)Q(x)dx.