MathDB
Weird sequence with floor

Source: 2018 China Southeast MO Grade 10 P5

July 31, 2018
algebra

Problem Statement

Let {an}\{a_n\} be a nonnegative real sequence. Define Xk=i=12kai,Yk=i=12k2kiai,k=0,1,2,...X_k = \sum_{i=1}^{2^k}a_i, Y_k = \sum_{i=1}^{2^k}\left\lfloor \frac{2^k}{i}\right\rfloor a_i, k=0,1,2,... Prove that XnYni=0n1Yii=0nXiX_n\le Y_n - \sum_{i=0}^{n-1} Y_i \le \sum_{i=0}^n X_i for all positive integer nn. Here α\lfloor\alpha\rfloor denotes the largest integer that does not exceed α\alpha.