MathDB
Simple inequality

Source: Shortlist BMO 2018, A1

May 3, 2019
BalkanalgebraBPSQinequalities proposedinequalitiesHi

Problem Statement

Let a,b,ca, b, c be positive real numbers such that abc=23.abc = \frac {2} {3}. Prove that:
aba+b+bcb+c+cac+aa+b+ca3+b3+c3.\frac {ab}{a + b} + \frac {bc} {b + c} + \frac {ca} {c + a} \geqslant \frac {a+b+c} {a^3+b ^ 3 + c ^ 3}.