Let n be a positive integer. For each 4n-tuple of nonnegative real numbers a1,…,a2n, b1,…,b2n that satisfy ∑i=12nai=∑j=12nbj=n, define the sets
A:={j=1∑2naibj+1aibj:i∈{1,…,2n} s.t. j=1∑2naibj+1aibj=0},B:={i=1∑2naibj+1aibj:j∈{1,…,2n} s.t. i=1∑2naibj+1aibj=0}.
Let m be the minimum element of A∪B. Determine the maximum value of m among those derived from all such 4n-tuples a1,…,a2n,b1,…,b2n.[I]Proposed by usjl.